GPS-Disciplined Rubidium Clock

AR51A-04

Ultra high stability and accuracy
Full military qualification

Key Features

- **Time Accuracy (1PPS):** 30ns RMS
 (50ns under environmental conditions)
- **Frequency Accuracy:** 2E-12
- **Holdover (without GPS):** < 1µs/24 hours
- **GPS in standalone, common and differential modes**
- **Position Accuracy:** 2m (differential mode)
- **Outputs:** 2x10MHz, 14x1PPS (TTL & RS-422), 2x51.2MHz, LAN
- **Disciplined to GPS or Ext 1PPS**
- **Input and output delay corrections in 10 ns steps**
- **Excellent Phase-Noise under vibration**
- **GPS modes:** standalone, differential or common view
- **Network Time Server:** NTP and SNTP server
- **LAN & RS-232 for command, control and data**
 Operation Temperature: -40 °C to +55 °C
- **22-32 VDC per MIL-STD-704A**
- **1-hour rechargeable battery back-up**
- **Vibration isolator included**
- **Full MIL-STD for military airborne & ground applications**

Description

The AR51A-04 is a fully Militarized GPS-Disciplined Rubidium Clock which offers ultra-high-stability and extraordinary accuracy. The unit is designed for demanding platforms such as airborne, helicopters, UAV’s, shipboard and ground mobile. It provides time accuracy of <30ns and < 50ns under all environmental conditions. Frequency accuracy is better than 2E-12. The unit has multiple outputs with very low phase-noise under vibration. Receiver operation modes are: standalone, differential or common-view.

The unit includes a militarized Rubidium-Atomic-Standard which is phase-locked to the GPS or to other external inputs. All outputs are derived from the Rubidium-Atomic-Standard that maintains accurate time and frequency even when GPS reception is interrupted.

The AR51A-04 has been qualified for operation in harsh environments. It was tested for wide temperature range, vibration, shock, altitude, EMI (see more details in the specification). In addition the AR51A-04 was tested by a GPS simulator in many modes of operation and passed real flight tests.

The unit includes a rechargeable battery module which is easily disconnected for ease of maintenance.

Applications

- Secure Communication
- ELINT Receivers
- Electronic warfare
- Radar, Bi-static Radar
- Field calibration
- Telemetry test fields
- C4I (Command, Control, Communications, Computer & Intelligence)
SPECIFICATIONS

All specs are at room temperature, quiescent conditions, sea level ambient unless otherwise specified

Input & Outputs

Outputs

- **10 MHz Sine wave** 12±2dBm / 50Ω
- **10 MHz Clock RS-422**
- **8 X 1PPS TTL 50 Ω, 300μs Puls width, Rise Time < 10ns**
- **6 X 1PPS RS-422, 300μs Plus width, Rise Time < 10ns**
- **2 x 51.2 MHz Sine wave 15dBm±2dBm / 50Ω**
- **GPS antenna (15 VDC)**
- **LAN: NTP & SNTP for time, navigation, status and BIT**

Input

- **Ext. 1 PPS (for locking to external source)**
- **LAN for command, control and data: setting time/date, delay correction for 1PPS 10ns steps, mode of operation (disciplining GPS, to Ext 1PPS, holdover, UTC time, GPS Time, Local Time, Day Light Saving) etc.** (see IDD document for more information)

Monitor & Control

- **RS-232 for command, control and data: setting time/date, delay correction for 1PPS 10ns steps, mode of operation (disciplining GPS, to Ext 1PPS, holdover, UTC time, GPS Time, Local Time, Day Light Saving) etc.** (see CLI document for more information)

Performance

<table>
<thead>
<tr>
<th>Mode of operation:</th>
<th>Disciplined to GPS or to Ext. 1PPS</th>
<th>Free running Rubidium-Standard (holdover)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time (1PPS)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Long-term Accuracy</td>
<td><30 ns RMS; < 50ns RMS under environmental conditions</td>
<td>< 1μs/day (typical), 5μs/week (typical)</td>
</tr>
<tr>
<td>Long Term Stability</td>
<td><2E-12</td>
<td>5E-11 / month drift in holdover</td>
</tr>
<tr>
<td>Short Term Stability</td>
<td><3E-11 @ 1sec ; <3E-12 @ 100sec</td>
<td></td>
</tr>
<tr>
<td>Temperature Stability</td>
<td>±3E-10 over -40°C to +55°C ; ±2.5E-10 over -40°C to +55°C (typical)</td>
<td></td>
</tr>
<tr>
<td>Phase Noise</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10MHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td><95 dBc/Hz @ 10Hz</td>
<td><90 dBc/Hz @ 10Hz</td>
<td></td>
</tr>
<tr>
<td><130 dBc/Hz @ 100Hz</td>
<td><128 dBc/Hz @ 100Hz</td>
<td></td>
</tr>
<tr>
<td><148 dBc/Hz @ 1kHz</td>
<td><140 dBc/Hz @ 1kHz</td>
<td></td>
</tr>
<tr>
<td><152 dBc/Hz @ 10kHz</td>
<td><155 dBc/Hz @ 10kHz</td>
<td></td>
</tr>
<tr>
<td>51.2MHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td><100 dBc/Hz @ 10Hz</td>
<td><72 dBc/Hz @ 10Hz</td>
<td></td>
</tr>
<tr>
<td><130 dBc/Hz @ 100Hz</td>
<td><115 dBc/Hz @ 100Hz</td>
<td></td>
</tr>
<tr>
<td><140 dBc/Hz @ 1kHz</td>
<td><130 dBc/Hz @ 1kHz</td>
<td></td>
</tr>
<tr>
<td><140 dBc/Hz @ 10kHz</td>
<td><144 dBc/Hz @ 10kHz</td>
<td></td>
</tr>
<tr>
<td>Harmonics (10MHz)</td>
<td>-45 dBc</td>
<td></td>
</tr>
<tr>
<td>Spurious (10MHz)</td>
<td>-85dBc (+100KHz from carrier)</td>
<td></td>
</tr>
<tr>
<td>Warm-up</td>
<td>5E-10 within <7 min, 5E-11 within < 60 min, 1E-11 within <4hrs</td>
<td></td>
</tr>
<tr>
<td>RS232 Output</td>
<td>Time, date, location and status, 19,200bps, 1 frame/sec</td>
<td>10 frames/sec</td>
</tr>
<tr>
<td>LAN</td>
<td>10/100 Base-T - All Commands, Control and Communication, TOD, Location. Support any client which comply for NTP Standards protocol ver. 3.0</td>
<td></td>
</tr>
</tbody>
</table>
SPECIFICATIONS (continu)

All specs are at room temperature, quiescent conditions, sea level ambient unless otherwise specified

Power Supply
- **Operating Voltage**: 28 VDC per MIL-STD-704A
- **Current**: <2.5A @ warm-up ; <1A @ steady state 25°C
- **Battery Back-Up**: 1 hour operation (25°C) 16 hours charge

GPS Receiver
- **General**: L1, C/A code, 12 channel continuous tracking, All-In-View
- **Dynamic**: Velocity 0 to 515 m/s, Acceleration 4g, Jerk 4g/s
- **Altitude**: –1000 to 18000 m
- **Update data**: 10 Hz
- **Accuracy**:
 - Position: 2 m RMS in differential modes ; 3 m RMS in common mode ; 15m RMS in standalone mode
 - Velocity: 0.05 m/s RMS
- **1PPS Accuracy**: 40 ns RMS
- **TTFF (Time To First Fix)**: 20 sec typical (with current ephemeris) ; 50 sec typical (without ephemeris); Cold Start: 2 min typical (@25C)

GPS Antenna
- **Available Antenna**
 - **Airborne** (AccuBeat P/N: EM30035)
 - Frequency: L1,L2 GPS ANTENNA: 1227 MHz ±10 MHz; 1575 MHz ± 10 MHz
 - Gain: 36 dB ± 2db
 - **Ground** (AccuBeat P/N: EM30036)
 - Frequency: L1 GPS Antenna
 - Gain: 36 dB

Dimensions & Weight
- **Without vibration isolator**
 - Dimensions: 241 (w) x 128 (h) x 246 (d) mm
 - weight: 4.0 kg
- **With vibration isolator tray and battery module**
 - Dimensions: 280 (w) x 183 (h) x 352 (d) mm
 - Weight: 8.0 Kg (Unit + 2.5 kg battery + 1.5 kg shock absorber tray)

Environmental
- **Temperature**
 - Operating: -40°C to +55°C
 - Storage: -40°C to +85°C
- **Temperature/ Altitude**
 - MIL-STD-810C. Method 520.1, procedure III modified, 45000 feet (with internal battery 9000feet
- **Vibration**
 - MIL-STD-810D, Method 514.3 Cat.6 Level 0.01g²/Hz 2 hours per axis (with Shock Mount)
 - Various vibration spectra 5-2000 Hz with 5.2 g RMS, 2 hours per axis.
- **Transportation vibration**
 - MIL-STD-810D, Meth.514.3, Cat. I Fig. 514.3-1,2,3 (1Hr per Axis)
- **Bench-handling Shock**
 - MIL-STD-810E, Method 516.4, Proc. 6
- **Shock (operation)**
 - MIL-STD-810E, Method 516.4, Proc 6, (20g, ramp, 11msec 3 axis total 18 Shocks –all with Shock Mount)
- **Crash Safety Shock**
 - MIL-STD-810E, Method 516.4, Proc 6, (40g, ramp, 11msec 3 axis total 12 Shocks –all with Shock Mount)
- **Rapid decompression**
 - MIL-STD-810E, Method 500.3, Procedure 3
- **Explosive atmosphere**
 - MIL-STD-810E, Method 511.3, Procedure 1
- **EMI / RFI**
 - MIL-STD-461C, CE03, CS01,CS02, CS06, RE01, RE02, RS01, RS02, RS03, CE06,CS03, CS04, CS05
 - RTCA/DO160-Lighting induced curent, bulk cable injection
- **Humidity**
 - 95% RH, MIL-STD-810E, Method 507.3, Proc. 1 Cycle 3 Fig 507.3-1
- **Dust**
 - MIL-STD-810E Method 510.3
- **Water drip**
 - MIL-STD-810E, Method 506.3, Procedure 2
- **Fungus**
 - MIL-STD-810E, Method 508.4 analysis
- **Salt Fog**
 - MIL-STD-810E, Method 509.3, Procedure 1 analysis

Reliability, Maintainability, Testability
- **MTBF**: 6,713 Hrs. 45°C AUG; 9,014 Hrs. 30°C AUG; as per MIL-HBK-217F N2 (Include battery)
- **Built-In-Test (BIT)**: 87% - O level; 90% - I level
- **Display LED's**
 - Lock to Rb, Lock to GPS, Lock to External, LAN, Power and Battery
- **MTTR**
 - **O Level**: 17 min to replace failed unit
 - **I Level**: 37 min to replace failed module
SPECIFICATIONS (continu)

All specs are at room temperature, quiescent conditions, sea level ambient unless otherwise specified.

Principles of Operation

The following block diagrams depict the operation of the AR51A-04. The unit includes a Rubidium Standard and accepts input from either internal GPS receiver or external 1PPS signal. All outputs are derived from the internal Rubidium Clock, which is phase locked via a digital PLL to the internal GPS receiver or to the external input. Thus, the Rubidium Clock - frequency and time - follows the GPS on average. If GPS reception is lost for a time period, the Rubidium Clock continues to maintain accurate time and frequency. The unit can control, via LAN, GPS and external 1PPS inputs and output delay corrections.

![Block Diagram](image1.png)

Data flow & Inputs Selection

Rubidium-GPS D-PLL and Inputs

Mechanical ICD

![Mechanical ICD](image2.png)

Electrical ICD

<table>
<thead>
<tr>
<th>Connector</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>J1 - Supply</td>
<td>D38999/24WA98PN</td>
</tr>
<tr>
<td>J2 – Battery in</td>
<td>D38999/24WD35SN</td>
</tr>
<tr>
<td>J3 – 10MHz Clock and 6X 1PPS RS-422 outputs</td>
<td>D38999/24WD35SB</td>
</tr>
<tr>
<td>J4 – Extern lock Input and Factory use</td>
<td>D38999/24WB35SN</td>
</tr>
<tr>
<td>J5 – 10 MHz sine output</td>
<td>SMA</td>
</tr>
<tr>
<td>J6 and J7 other frequency</td>
<td>SMA</td>
</tr>
<tr>
<td>J8 – 6X 1PPS TTL outputs</td>
<td>D38999/24WE06BN</td>
</tr>
<tr>
<td>J9 – LAN</td>
<td>D38999/24WA35SA</td>
</tr>
<tr>
<td>J10 – GPS Antenna output</td>
<td>TNC</td>
</tr>
<tr>
<td>J11 – GPS Antenna Input</td>
<td>TNC</td>
</tr>
<tr>
<td>J12 – Factory use</td>
<td>SMA</td>
</tr>
<tr>
<td>J13 and J14 – 1PPS TTL</td>
<td>SMA</td>
</tr>
</tbody>
</table>
All specs are at room temperature, quiescent conditions, sea level ambient unless otherwise specified.

Typical Performance Plots

- **Typical time error in Holdover (without GPS)** – 710ns in ~64000s
- **Typical time error fluctuations when disciplined to GPS**

HOW TO ORDER

<table>
<thead>
<tr>
<th>ACCESSORIES</th>
<th>AccuBeat P/N:</th>
</tr>
</thead>
<tbody>
<tr>
<td>AR51A-04</td>
<td>AR51004</td>
</tr>
<tr>
<td>Battery</td>
<td>AA50408</td>
</tr>
<tr>
<td>Vibration isolator</td>
<td>MU50012</td>
</tr>
<tr>
<td>Airborne L1,L2 GPS Antenna 36 dBm</td>
<td>EM30035</td>
</tr>
<tr>
<td>Ground L1 GPS Antenna 36 dBm</td>
<td>EM30036</td>
</tr>
<tr>
<td>Antenna Cable</td>
<td>Contact Factory</td>
</tr>
</tbody>
</table>